InSb Bipolar Transistors Operating at Room Temperature

T. J. Phillips, T. A shley, T. M. Burke and A. B. Dean

QinetiQ, Sensors and Electronics Division

St Andrews Road

Malvern, WR14 3PS, UK

(QinetiQ was formerly DERA, the UK's Defence

Evaluation & Research Agency)

Outline

- Why InSb?
- Carrier Exclusion/Extraction
- Bipolar Devices
 - Experimental Results
 - Modelled Results
- Conclusions

Why InSb?

	Silicon	GaAs	In _{0.53} Ga _{0.47} As	InAs	InSb	units
Energy gap	1.12	1.43	0.75	0.356	0.175	eV
Electron effective mass	0.19	0.072	0.041	0.027	0.013	
Electron mobility	1,500	8,500	14,000	25,000	78,000	cm ² V ⁻¹ s ⁻¹
Electron saturation vel ^y	1.0 x 10 ⁷	1.2 x 10 ⁷	8 x 10 ⁶	3 x 10 ⁷	5 x 10 ⁷	cm s ⁻¹
Electron mean free path length	0.07	0.15	0.19	0.27	0.58	μ m
Intrinsic carrier conc ⁿ	1.6 x 10 ¹⁰	1.1 x 10 ⁷	5 x 10 ¹¹	1.3 x 10 ¹⁵	1.9 x 10 ¹⁶	cm ⁻³

Special Properties of InSb

- High mobility ⇒
 - low operating voltage
 - low power dissipation
- High electron velocity ⇒
 - high speed
 - high gain
 - low noise
- High mean-free path ⇒
 - large ballistic effect
 - high speed

Consequences of Special Properties

- Cut-off frequency is much higher than other technologies for the same sized device
 - C an process more information per second than any other technology
- Low operating voltages and high gain per unit current offer very low power consumption
 - C an process more information per W att than any other technology

Problem

- High intrinsic carrier concentration
 - large number of minority carriers in active region
- Large off-state leakage current in transistors
 - Parasitic bipolar action in FETs
- Increased breakdown and poor voltage gain

Solution

- U se carrier exclusion/extraction (subject to several QinetiQ patents) to reduce carrier concentration in active region
 - Reverse-biassed heterostructure substrate contact to active region in FETs
 - Excluding base contact in bipolars
- Resulting devices operate successfully at room temperature
 - Greatly reduced leakage
 - Greatly reduced breakdown

Modelled FET Example

Without substrate bias

With substrate bias

Substrate bias reduces carrier concentration in active region

InSb FETs

- Demonstrated InSb FETs previously*
- Showed good DC performance, with good turnoff
- Showed excellent A C performance, with record f_T reported for gate length of 0.7 μm

Bipolar Devices

- U se excluding base contact (heterostructure or homostructure), which can be reverse-biassed to give good off-state leakage
- Otherwise works just like a conventional HBT
- Subject to QinetiQ patent*

Bipolar Device - Test Structure

- M ade initial structure to test room temperature operation
- Does not contain base implant at present
- Larger off state leakage in agreement with model
 - Predicted to be reduced by factor of 8 using implant
- Good performance otherwise
- Reverse-biassing base suppresses impact ionisation increasing off-state breakdown voltage

Growth and Fabrication

- Layer growth by MBE on (100)
 InSb substrate
 - Si and Be as *n* and *p*-type dopants
- Device mesa 25 µm wide
- Emitter width 6 μm, collector width 18 μm
- Sputtered C r/A u contacts (not optimised for A C)

6 μm Emitter InSb HBT - Output

Darker line is zero base bias - negative bias reduces breakdown

6 μm Emitter InSb HBT - Transfer

Base current negative and fairly constant - yery high current gain

QinetiQ

InSb HBT Model - Transfer

InSb HBT Model - Gummel

Implant reduces leakage current

InSb HBT - AC data

Bond pads not optimised for AC

Bipolar Devices

- Complete device design not yet fabricated, but promises excellent performance
 - Ultra high transconductance
 - V ery high voltage gain
 - Same low voltage operation as FETs
 - $f_T > 800 \text{ GHz}$, $f_{max} > 200 \text{ GHz}$, 1 µm emitter
- Suitable for digital, medium power or ADCs
- Potentially highly manufacturable process with high uniformity
- Potential for ultra-low noise
- Make DHBT for higher breakdown voltage

Possible A pplications

- Electronic components for high-speed optical comms
 - 160 G B /s generation
- Interface with superconductors
 - Niche at present but could become large
 - N eed very low voltages and low noise, plus cryogenic capability
- Possible interface with 2D IR arrays
- High speed digital processing
- There will always be uses for higher speed and lower power electronics

